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ABSTRACT
We propose a novel approach for image corpus representa-
tive summarization using GAN. Our technique can be used
to automatically provide a condensed set of representatives
for the given image collection. The generated summary can
be used for rapid prototyping as models can be trained us-
ing the summarized set instead of the larger original dataset.
The problem is challenging because a good summary must
cover various aspects of an image set such as relevance and
diversity. Additionally, lack of sufficient ground truth data
makes the problem hard to solve using classical supervised
machine learning approaches. In our algorithm, we use CNN
and an MLP score layer to compute the priority of each image
towards the summary. Our network is trained in an unsuper-
vised manner using a generator for reconstructing the original
dataset, and a discriminator, for classifying between original
and summary. We show the efficacy of the algorithm using
rigorous experiments.

Index Terms— Summarization, GAN, unsupervised
learning.

1 Introduction
Image corpus representative selection or summarization is an
essential requirement for efficient representation, navigation
and exploration [1]. Web image collection for e-commerce,
tourism and travel exploration, story-telling from personal al-
bum collections, online image recommendation systems are
some of the immediate applications of automatic image cor-
pus summarization [2]. Another very important application
is while training machine learning algorithms. In particu-
lar, deep networks require significant amount of time even
for fine-tuning. In such a case, it would be beneficial if the
network can be fine-tuned using a representative summary in-
stead of original dataset. However, an annotated summary is
not readily available. Thus, a summary which can be labeled
at a much less cost compared to original dataset would be ben-
eficial. Summarization of dataset can help train models with-
out trading-off much on accuracy as the diversity of data is
maintained while saving huge computational resources. Once
the appropriate hyper-parameters are known, the model can
be appropriately scaled.

Summarization has been well explored in videos for ef-
ficient browsing and other applications [3], [4], [5], though

image corpus summarization has not received an equivalent
attention [6, 7, 8, 9]. This is partly because, videos have
the redundancy in the temporal dimension which can be ef-
fectively learnt and reduced, whereas image corpus need not
have such redundancy. Thus the problem becomes quite chal-
lenging. However, there is a lot of redundancy in the intra
class samples which can be exploited to determine the most
representative samples. Summary of image corpus can be
both qualitatively and quantitatively analyzed based on fac-
tors of relevance and diversity, which we define as following.

• Relevance means how relevant is a particular image to a
given task such as classification, segmentation or detection.
For example, a certain image may be relevant for a specific
task and should be captured in the summary, whereas, for a
different task this image may not be desired as a part of the
summary.

• Diversity maintains that all the images that are distinct are
included in the summary and must not contain any redun-
dancy [10], [11].

Towards this, we make the following contributions.

• We propose a novel image corpus summarization model us-
ing MLP and GAN. Our network can be trained in an end-
to-end fashion.

• We introduce a task-specific loss to generate the summary
related to a given task. In our experiments related to classi-
fication task, we show that the loss promotes both relevant
and diverse images in summary.

• We analyze the relevance and diversity of summary using
multiple metrics. We also analyze the goodness of sum-
mary by training a classifier on it and compare the perfor-
mance against usage of original dataset. In our experiments,
we demonstrate that the accuracy achieved by fine-tuning a
model using the summary is comparable to the accuracy
achieved when original dataset is used.

2 Related Works
Image collection summarization can be categorised into dif-
ferent class of works namely, summary based on sparsity
learning and personal albums.



Fig. 1: Images Xt are given as an input to CNN. The scorer ANN S gives score s for each image which defines its importance for the
summary. Then each feature vector is weighted by its score and forwarded to generator called as G for reconstructing the image X̂ . The
discriminatorD classifies X̂ as original or summary class. The pre-trained classifier model is used when a classification task specific summary
needs to be generated. For generating the summary, we can select the images based on the score s.

Sparsity Learning: In [2], Yang et al. formulate im-
age summarization as an optimization problem. The authors
apply a dictionary learning approach based on SIFT-Bag of
Words model for creating the summary. On similar lines, [12]
present a structured sparsity learning approach for determin-
ing representative samples. The authors make use of three
different regularizers - group sparsity, diversity and locality-
sensitivity to achieve the task. Other works based on dictio-
nary learning approach are [13], [14]. In [7], Wang and Yuan
propose to learn the representative samples by minimizing the
L2 distance between the selected samples and the center ob-
tained by the samples in the kernel space. An L1 constraint
is applied on selection vector to promote sparsity in the rep-
resentative examples.

Personal Albums: Some works generate summary from
a large personal photo albums [11], [15]. In [11], Sinha et.
al. propose to use multdimensional features such as visual,
temporal, event type, location and people. In [16], authors
extract storyline from the album photos.

Summary can be generic or task specific. Algorithms pre-
sented in [2], [13], [14], [12] provide generic summary as they
focus on reconstruction of complete dataset using the sum-
mary itself. Whereas, [11], [15] are task specific summaries
where the task is storytelling. In this paper, we propose a
model which can provide both generic as well as task specific
summary. Our work is very different from the aforementioned
algorithms as it employs a multilayer perceptron scorer and
a generative adversarial network to generate the summary.
To the best of our knowledge, this is the first deep learning

based approach which can jointly perform generic and task-
specific image corpus summarization. The major advantage
of our work is that the network is trained in an unsupervised
end-to-end manner and does not suffer from inherent issues
of handcrafted features which are used in dictionary learning
approaches. In the following, we describe our architecture.

3 Image Collection Summarization
Our network takes CNN feature embedding of images as an
input. CNN is followed by a scorer which is a multilayer
perceptron. The scorer assigns a relative importance score to
each image such that the higher the score the more the like-
lihood of the image being present in summary. The fused
output of score layer with CNN feature vectors are used as an
input to GAN. The function of the generator is to reconstruct
the images of original dataset. The discriminator then distin-
guishes between the original and the reconstructed dataset. A
detailed diagram is given in Figure 1.

3.1 Problem Formulation

Given a collection of n images X = {X1, X2, ..., Xn}, we
aim to find a subset summary of these images while preserv-
ing the relevance and diversity.

3.2 Learning Framework

In our algorithm, we first extract features of the images X =
{X1, X2, ..., Xn} using GoogLeNet [17]. Let these features
be x = {xt : t = 1...n}. These features are fed as an input to
the scorer ANN S which consists of 2 layers of 1024 neurons



each, followed by a single neuron that outputs the score cor-
responding to an image. These scores represent the relative
importance of the image being present in the summary. Im-
ages with higher scores can be selected to generate the sum-
mary. Let s = {st}, st ∈ [0, 1] be the scores. The features xt
are weighted using these scores. This then acts as an input to
the generator G which reconstructs the image collection de-
noted by X̂ = {X̂1, X̂2, ..., X̂n}. The discriminator D in the
GAN is aimed to classify images into two distinct classes, and
hence, distinguish between images from X and X̂ as Original
and Summary. Generator and discriminator are trained ad-
versarially until the discriminator is not able to discriminate
between the summary and original dataset.

3.3 Training the model

We discuss the different loss functions and training part of
the algorithm in this section. The parameters of the model
are ws, wg and wd for the scorer, generator, and discrim-
inator, respectively. The training of our model is defined
by following losses: reconstruction loss Lreconstruct, loss
of GAN LGAN , regularization loss Lsparsity and task-
specific loss Ltask−specific. We learn ws by minimizing
Lsparsity+Lreconstruct+Ltask−specific, wg by minimizing
LGAN + Lreconstruct and wd by maximizing LGAN .
Ltask−specific is added only for the case of task-specific

summarization. We explain this in more detail under sub-
section 3.3.4. The training pipeline is also illustrated in Al-
gorithm 1. We train the model using a combination of losses
and we name each variant in Section 5.

Algorithm 1: Training the model

1: function UPDATE PARAMS . where input is the feature vector
sequence and output is learned parameters ws, wg, wd

2: for max number of iterations do
3: X ← mini batch of images
4: x← CNN(X)
5: s← S(x) . compute scores
6: E ← sx . weigh feature vectors by scores
7: X̂ ← G(E) . Reconstruction
8: % Update rules:
9: ws

+← -∇(Lreconstruct+Lsparsity+Ltask−specific)
10: wg

+← -∇(Lreconstruct+LGAN )

11: wd
+← ∇(LGAN )

3.3.1 Reconstruction Loss Lreconstruct
This loss is used to make a summary that captures all diverse
images. If original set of images can be reconstructed us-
ing the feature vectors of the summary, then summary can be
considered to have contained all diverse images [2]. The re-
construction error is given as,

n∑
t=1

∥∥∥Xt − X̂t

∥∥∥
2

(1)

where Xt is an image in the original dataset, X̂t is the cor-
responding reconstructed image from the generator and n is
the number of images in original dataset. We try to achieve
a similar formulation where we take feature vectors from our
summary and try to reconstruct the image dataset in feature
space. Thus we express each feature vector xt as a linear
combination of the summary image’s feature vectors as,

xt =

σn∑
j=1

djvjt (2)

where d is the feature vector which corresponds to images
that are part of the summary, vjt is the non-negative weight
of vector dj , and σ is a hyper-parameter to control the frac-
tion of images selected for the summary. Then, we define the
reconstruction error as,

Lreconstruct =
n∑
t=1

∥∥∥xt − σn∑
j=1

djvjt

∥∥∥
2

(3)

We compute the weights vjt using multiplicative algorithm in
[18].

3.3.2 Loss of GAN LGAN
The reconstruction loss can only reconstruct the feature vec-
tors using representatives. However, apart from the recon-
struction error there is no good measure to determine whether
the representatives summarize the dataset well. Therefore, we
use an unsupervised way of determining the goodness of sum-
mary using GAN. The GAN is trained to discriminate whether
the generated images belongs to original set or summary. To-
wards this, the input to GAN is the weighted feature vector
stxt. We use DCGAN in our model [19]. The LGAN is thus
defined as,

LGAN = log(D(X)) + log(1−D(G(stxt)))) (4)

where G is the generator and D is the soft-max output of
the discriminator. Initially, the discriminator can easily clas-
sifyX as the original image and the generated images as sum-
mary. However, once the network is trained, the discriminator
does not clearly distinguishes between the original and sum-
mary examples.

3.3.3 Regularization loss Lsparsity
This loss regularizes the number of images that form the sum-
mary by learning the scores st which represent the relative
importance of the feature xt in the summary. Regularization
is required to ensure that the summary length is minimal. We
use length regularizer loss as well as DPP loss given by

Lsparsity = LLR + δLDPP (5)

where,

LLR =
∥∥∥ 1
n

n∑
t=1

st − σ
∥∥∥
2

LDPP = −log(P (sS))



where δ ∈ {0, 1} and LDPP is the Determinantal Point
Process (DPP) loss [20]. DPP loss has also been popularly
used for summarizing videos [21], [3]. DPP loss promotes
diversity while minimizing the number of images in the sum-
mary. In our case, we construct the DPP loss as follows. For
set of images X , we select a subset S ⊂ X which constitute
the images in summary with corresponding scores sS . We
first compute a distance matrix D ∈ Rn×n. D is constructed
with each entry as Di,j = sisjx

T
i xj . We then compute the

probability of the scores sS assigned by DPP, and we have,

P (sS ;D) =
|D(sS)|
|D + I|

(6)

where |.| denotes determinant, I is an identity matrix, and
D(sS) ∈ Rσn×σn is a submatrix of D given sS . The value
of σ is chosen according to the required size of the summary.
Thus, by varying σ we control sparsity in terms of summary
length. For low values of σ, say σ = 0.01 (1% summary
size), the summary will be much more sparser as compared to
when σ = 0.1 (10% summary size). In other words, the size
of the summary would be σn.

3.3.4 Task-specific loss Ltask−specific
A task specific summary would be used to perform certain
task and must perform best for that intended task. In the fol-
lowing, we assume a task specific summary where the task is
classification. To this end, we introduce a task-specific loss,

Ltask−specific =
(1− s)Lpre−trained(X)

β
(7)

whereLpre−trained(X) is the loss obtained from the task spe-
cific pre-trained model and β is a hyper-parameter. β also
controls the number of outliers to be selected in summary
from the dataset. In our experiments, Lpre−trained is the
cross entropy loss. We explain the role of β in Section 5. The
task-specific loss promotes the presence of outliers, where
outliers represent both relevance and diversity. We illustrate
this using the following scenario.

Let us consider a case where there is a dense cluster of
points and an isolated point. If we want to generate a sum-
mary, we can sample an arbitrary point from a cluster as it
represents the entire set of points in the cluster. However,
we miss on the diversity aspect as the isolated point is non-
redundant and should be present in the summary. Further, for
these outliers, the classification loss is high as they are less
probable candidates for correct classification. Furthermore,
if these outliers have a low score s, they are less likely to
be present in the summary. Now, during the process of mini-
mization of this task-specific loss to increase classification ac-
curacy, the score s must increase, thereby increasing the like-
lihood of those images being present in the summary. Thus
by encouraging these outliers, the training of the network can
also be robust to these set of exemplars, thereby selecting the

relevant samples which can enhance the task-specific perfor-
mance. In case of general summary, the task-specific loss is
not incorporated in the overall objective function.

4 Datasets
We use publicly available datasets to train and test our model.
Since there are very few datasets which have summary an-
notations in terms of relevance and diversity, we test on both
datasets - where annotations are available as well as where
it is unavailable. We evaluate our model using following
datasets: CIFAR-10 [22], CIFAR-100 [22], Animals with
Attributes 2 (AwA2) [23], VOC2012 [24] and Diversity 2016
[25]. CIFAR-10 consists of 60,000 32×32 tiny images be-
longing to 10 classes with similar images per class. There are
50,000 training and 10,000 test images. CIFAR-100 consists
of 60,000 32×32 tiny images with 600 images per class. The
classes are divided into 20 super-classes with 5 classes per
super-class. AwA2 is another data set used for classification
purpose. It contains 37,322 images of 50 animal classes.
Visual Object Classes (VOC2012) is another image classifi-
cation data set with 20 classes and 11,530 images. Diversity
2016 contains the images with corresponding ground truth
images for task of diversity in image retrieval. Images are
ranked according to their importance within a class. We use
Top-50 ranked images from each class to create the ground
truth. There are 20,821 images of multiple classes with each
class containing approximately 300 images.

5 Experiments
We implement our architecture using TensorFlow1. All the
experiments are performed on Nvidia GTX 1080 GPU. We
train the network with a batch size of 32 images for 25 epochs.
We use the output of Pool5 layer of the GoogLeNet [17] of
1024-dimensions for the feature descriptor. The values of
the hyper-parameters are empirically set. A learning rate of
0.0001 and 0.0002 is used in the Adam optimizer for the
scorer and the GAN, respectively. Batch normalization and
dropout layers are also employed. We use a three-layer ANN,
with 1024 hidden units each, in the first two layers, followed
by a single unit as the output layer. For the task-specific loss
(Lpre−trained), Inception V3 model is fine-tuned for the im-
ages in the corpus, and the cross-entropy loss is computed.

The different metrics that are used to evaluate summary
are reconstruction error, F-score, Gini index [26], and task
accuracy. We use multiple losses and denote the model
using specific losses with the following names. When we
use Lreconstruct + LGAN + LLR, we call this variant as
SUMgen and it gives a general summary as the model does
not have any notion of a pre-defined task. We denote the
summary with loss Lreconstruct +LLR +LDPP +LGAN as
SUMDPP

gen which also gives a general summary. When we
use Lreconstruct+LLR+LGAN +Ltask−specific, we denote
it as SUMtask and it generates a task-specific summary.

1Our code is available at https://github.com/anonblindreview/Summarization



5.1 Reconstruction Error

We report the reconstruction error in Table 1. We observe
that the reconstruction error gets better with increase in the
fraction of images retained in summary. This is expected as
with increase in σ, the summary size increases and it becomes
easier to reconstruct the original dataset. Further, compared
to generic summary obtained using SUMgen or SUMDPP

gen ,
it can be seen that the reconstruction error is lower when the
task-specific loss is incorporated. This is because minimiz-
ing the task-specific loss ensures diversity by prioritizing the
inclusion of the outliers, as discussed in Section 3.3.4. A bal-
anced presence of the outliers in the summary helps in the
reconstruction of all the different kind of images present in
the original dataset. This presence of outliers is further con-
trolled by the value of β. This is empirically shown by eval-
uating the number of outliers and the reconstruction error for
different values of β, for the VOC2012 dataset with σ = 0.03.
In Fig. 2-Left, we find that the number of outliers decreases
with increase in the β. Further, in Fig. 2-Right, we observe
that when β is low, the reconstruction error is high, as the
summary in that case contains a significant amount of out-
liers, and hence the difficulty in reconstructing the original
dataset where inliers are in large quantity. The optimal value
of β is achieved when there is a balanced presence of outliers
and at this value of β the reconstruction error is minimum.

Table 1: Reconstruction Error for different values of σ

σ Method CIFAR10 CIFAR100 AWA2 VOC2012

0.01
SUMgen 0.307 0.314 0.515 0.565
SUMDPP

gen 0.292 0.283 0.509 0.546
SUMtask 0.274 0.268 0.508 0.542

0.03
SUMgen 0.286 0.272 0.412 0.539
SUMDPP

gen 0.252 0.248 0.416 0.469
SUMtask 0.251 0.257 0.410 0.459

Fig. 2: Figure highlighting variation of outliers and reconstruction
error vs. β. The thresholds used here are 0.1 and 0.5, all images
with cross-entropy loss (Lpre−trained) greater than the threshold are
considered to be outliers

5.1.1 F-Score

We report precision, recall and F-score vs σ in Table 2. Preci-
sion is the ratio of the number of overlapping images between

Table 2: F-Score vs σ plot for Diversity 2016. Pr - Precision, Re -
Recall, Fs - F-Scores (in %)

Method σ 0.01 0.03 0.05 0.1 0.3 0.5

SUMgen

Pr 16 19.6 19.31 16.26 17.77 16.94
Re 2.05 3.08 4.80 6.857 29.28 47.60
Fs 3.645 5.3446 7.68 9.64 22.12 24.99

SUMDPP
gen

Pr 17.605 18.12 18.26 17.877 17.11 17.13
Re 2.85 3.428 6.258 9.77 28.88 51.17
Fs 4.916 5.766 9.321 12.63 21.49 25.67

SUMtask

Pr 16.91 16.20 18.16 15.02 16.62 17.11
Re 2.94 3.20 4.857 8.371 28.94 51.25
Fs 5.01 5.3447 7.66 10.75 21.11 25.65

k-means
Pr 11.53 14.42 15.85 15.75 17.62 17.06
Re 0.68 2.57 4.71 9.37 30.62 47.05
Fs 1.29 4.36 7.26 11.75 21.99 25.04

summary and ground truth to that of summary length. Re-
call is the ratio of the number of overlapping images between
summary and ground truth to that of ground truth size. The
F-score is harmonic mean of the two. We observe a high re-
call and F-score when the summary length is 50% of original
dataset. In this case, we observe a low precision compared to
recall as the summary length is approximately 10,000 against
3500 for ground truth. We find that recall and F-score are very
low for σ = 0.01, 0.03. In these cases, the summary length
is about 200 and 600 respectively, which is very low com-
pared to ground truth size. However, it may be necessary to
generate such small summaries in order to save computational
resources. We observe a best precision of 19.6% for σ = 0.03
with SUMgen variant. Recall is highest for SUMtask model
at σ = 0.5, whereas, best F-score of 25.67% is obtained with
SUMDPP

gen model at σ = 0.5.

5.2 Gini Index

In order to measure diversity, we compute Gini index [26].
We compare these indices computed for randomly picked im-
ages from dataset, images picked corresponding to centers of
k-means feature clusters and for images from summary, and
plot in Fig. 3. In order to perform a comparison, we require
that the summary generated using the k-means method is also
of the same size. Towards this, the number of clusters in the
k-means method is set to be equal to σn. We use Gini index
because this metric inherently gives uniform weightage to all
the classes present in dataset. This is important as summary
must comprise images from all classes. In case of k-means
and random summary generation, this uniformity may not be
achieved. We observe that for generic summary of datasets
CIFAR10 and CIFAR100, the Gini index is best (lowest) for
SUMDPP

gen which essentially means that the probability of
choosing images from each class towards summary genera-
tion is more uniform than k-means and random, thus main-
taining the diversity.



Fig. 3: Gini index for different datasets and σ values. X-axis repre-
sents σ and Y-axis represents Gini index. Proposed model gives best
(lowest) Gini index compared to K-means and random methods

Table 3: Classification accuracies (in %) when original and sum-
maries at 10%, 30% and 50% are used to fine-tune inception-v3

Dataset Original 10% 30% 50%
CIFAR10 89.12 80.61 83.75 85.51
CIFAR100 65.35 51.85 58.71 61.07

AwA2 92.5 89.87 91.15 91.77
VOC2012 79.74 77.05 78.61 79.00

5.3 Qualitative Analysis

In order to understand the effect of DPP and Task-specific
losses, we perform the t-SNE visualization experiment for
VOC2012 dataset with σ = 0.05 for the different variants
of our model. In Fig. 5, we show the plots for full original
VOC2012 in Fig. 4a and the summary at 5% with SUMgen

in Fig. 4b, with SUMDPP
gen in Fig. 4c and with SUMtask in

Fig. 4d. In Fig. 4c and 4d, we mark a cluster with solid con-
tour. As DPP generates a summary which is more sparse, we
can observe it in the highlighted part of Fig. 4c. We see that
the cluster is sparser compared to the same cluster highlighted
in Fig. 4d. Further, it can be seen that when task-specific loss
is incorporated in the model, outliers get included in the sum-
mary. This can be observed from dashed contours in Fig. 4d.
In case of outliers which are a part of clusters of other classes,
the task-specific loss can capture them well.

In Fig. 5a and 5b we show the t-SNE image embeddings
of the ground truth summary and summary generated by our
model. We mark the common images in a red boundary.

We illustrate the GAN generated images in Fig. 6 which
are generated while training SUMgen on CIFAR-10 dataset
with σ = 0.01 and a batch size of 32 images. It can be
seen that the generator is able to generate recognizable im-
ages even when trained for just 25 epochs.

5.4 Classification Accuracy

In case where class annotations are unavailable, we can create
a general summary. Annotating a summary would be signifi-
cantly less expensive compared to the original data. Further,
if the general summary is a good representative of the origi-
nal data, then the summary should give a performance close
to what can be obtained using original data. In order to cre-

Table 4: Classification accuracy for various σ values. Best value
for general summary among SUMgen, SUMDPP

gen and k-means are
highlighted in bold

σ Method CIFAR10 CIFAR100 AWA2 VOC2012

0.01
SUMgen 63.03 22.76 70.48 55.21
SUMDPP

gen 65.77 25.71 71.93 57.35
SUMtask 68.70 31.51 72.95 58.56

- k-means 64.97 24.86 71.06 55.25

0.03
SUMgen 66.73 27.13 76.41 60.37
SUMDPP

gen 71.09 32.49 76.22 62.90
SUMtask 72.06 33.51 77.84 64.08

- k-means 67.62 32.30 74.91 60.75

0.05
SUMgen 72.67 37.39 78.72 64.73
SUMDPP

gen 72.07 37.44 78.78 65.01
SUMtask 78.08 41.00 80.56 66.07

- k-means 71.03 34.92 77.08 65.71

0.1
SUMgen 75.45 40.71 81.17 67.88
SUMDPP

gen 75.73 42.40 82.39 68.25
SUMtask 78.89 46.26 83.55 70.87

- k-means 71.96 39.09 78.12 70.35

ate a general summary, we use only Lreconstruct, LGAN and
Lsparsity (with δ = 0) losses. In order to evaluate whether
the summary is a good representation of original, we perform
the following experiment. We first fine-tune an inception v3
model on original dataset and compute the classification accu-
racy. Further, we fine-tune using summary only and compute
the classification accuracy. We report these results in Table 3.
Since our goal is to test the goodness of summary, we only run
the model for few epochs attaining a decent accuracy, though
state of art accuracy may be achieved by using more epochs.
We observe that the accuracy achieved using summary is good
when compared to its original counterpart. These results are
of great significance because the training using summary uses
only 10% of original data, while the trade-off in accuracy
is only about 6.8%. In case of 30% and 50% summary of
original data, the drop in accuracy is only about 3.62% and
2.34% respectively. Thus it is evident that the summary cap-
tures most of the aspects of the dataset.

We compare the accuracies of summary generated by
Random sampling, k-means, SSDS [12], HyperSphere [7]
and SUMDPP

gen . In Table 5, for σ = 0.1, we observe that
the proposed model performs better for CIFAR10 and CI-
FAR100. This is attributed to the fact that the scorer effi-
ciently computes the relative importance of each image in
summary. Also, the reconstruction error ensures that the
feature representations of original dataset images can be re-
contructed using the feature vectors of summary images.
Further, the GAN helps learn the summary images such that
these images belong to the domain of original dataset itself.
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Fig. 4: t-SNE plot for VOC2012. (4a) Full dataset, (4b) summary at 5% with SUMgen , (4c) summary with SUMDPP
gen and (4d) summary

with SUMtask variants. Different colors represent different classes

Table 5: Classification accuracies (in %) comparison for summary
at σ = 0.1

Method CIFAR10 CIFAR100 AwA2
Original 89.12 65.35 92.50
Random 75.89 45.31 86.13
k-means 78.24 48.45 87.35

SSDS [12] 79.34 50.60 88.61
HyperSphere [7] 79.13 48.32 88.90

Ours 80.61 51.85 89.50

Evaluation under outliers

In some cases, it may be argued that the network trained with
a summary may not perform well when the test set has out-
liers which are not captured in the summary. Thus, in order
to determine the robustness of our model against outliers, we
specifically inject them into the test sets. We report the ac-
curacy without outliers in Table 3, and with outliers in Ta-
ble 4. We experimentally define an outlier image which has
Lpre−trained > 0.8 for each dataset. The outlier injection
is also carried out in order to observe the effectiveness of
the task-specific loss. We can clearly see that the presence
of task-specific loss significantly boosts the accuracy in all
cases. As no such outlier injection is carried out in the exper-

Table 6: Time required for summary generation

Dataset No. of images Resolution Time
CIFAR-10 50000 32x32 3h

CIFAR-100 50000 32x32 3h
AwA2 32000 299x299 2h 15m

VOC2012 15000 299x299 1h
Diversity 2016 20821 299x299 1h 30m

iments for Table 3, the reported accuracies are higher in its
case.

5.5 Time Complexity

Here, we give the running time for each of the datasets. The
training is run for 25 epochs with a batch size of 32 images.
The average time required for training our model and gener-
ating the summary for the different datasets is given in Ta-
ble 6. The datasets AwA2, VOC2012 and Diversity 2016
have images of varying resolutions, so for consistency, up-
sampling/downsampling is performed to get a constant reso-
lution of 299x299 for all the images.

6 Conclusion
In this work, we propose an unsupervised model to create a
summary out of a large collection of images. From the origi-



(a)

(b)

Fig. 5: (a) Ground truth summary for Diversity 2016, 1400 images (Top-20 images selected from each of 70 classes). Please zoom in for
better visualization, (b) Summary generated by our model for Diversity 2016, 1400 images. The red boundaries highlight the images which
are common to both summary and ground truth

Fig. 6: Generated images for CIFAR-10. First column - original
images; subsequent columns show images generated from epochs 5,
10, 15, 20 and 25 respectively

nal image set, our model selects the most diverse and relevant
images. The proposed network makes use of a scoring layer
and fusion of CNN feature vectors with scores as input to
GAN. We train the model using four different losses namely
reconstruction, GAN, sparsity and task-specific loss. We eval-
uate the algorithm with various metrics and show the efficacy
of our network. In addition, we show that the classification
results attained by training a deep network on summary only
and on original dataset are comparable. Thus, the summary
can be used for a quick analysis of various models without
needing to train on entire dataset. In case the labels are not
available, our technique can be used to summarize and retain
a fraction of data, which can be relatively convenient to an-
notate. Further, one can perform different tasks on this data
before scaling up the model or performing other processing
on the original data.
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