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Abstract—The goal of zero-shot sketch-based image retrieval
is to retrieve relevant images from a search set against a hand-
drawn sketch query, which belongs to a class, previously unseen
by the model. The knowledge gap between such unseen and seen
classes along with the domain-gap between the query and search-
set makes the problem extremely challenging. In this work, we
address this problem by proposing a novel retrieval methodology,
StyleGuide using style-guided fake-image generation. In addition,
we further study the scenario of generalized zero-shot sketch-
based image retrieval, where the search set contains images from
both seen and unseen categories. Specifically, we propose an
unseen class sample detection approach based on pre-computed
prototypes to construct a refined search set for such experimental
settings. Thus, the query sketch needs to be compared only to
those image data which are more likely to belong to the unseen
classes, resulting in improved retrieval performance. Extensive
experiments on two large-scale sketch-image datasets, Sketchy
extended and TU-Berlin show that the proposed approach
performs better or comparable to the state-of-the-art for ZS-
SBIR and gives significant improvements over the state-of-the-art
for generalized zero-shot sketch-based image retrieval.

Index Terms—sketch-based retrieval, generalized ZS-SBIR,
content-style decomposition, novelty detection

I. INTRODUCTION

SKETCH-based Image Retrieval (SBIR) is a vey relevant
problem in today’s era of smart gadgets and touch-screen

devices with potential applications in the field of e-commerce,
forensics, etc. It allows an user the flexibility to search an
image database with a roughly-drawn sketch, instead of writ-
ing a text description (text-based image retrieval) or obtaining
a similar image (image-to-image retrieval). The problem of
SBIR has been considered from two different perspectives
in literature. Retrieval of image instance from a database
matching the exact details (shape / pose) of the hand-drawn
sketch query is referred to as fine-grained SBIR [1][2]. On the
other hand, category-based SBIR [3][4] considers retrieving
images of same category as in the sketch, irrespective of their
shape / pose. However, during retrieval, the sketch query and
the database images are always considered to belong to one of
the training categories, which ensures that the trained model
has adequate knowledge of the sketch-image mapping.

In real-life applications, objects of new categories are con-
tinuously being added to the database and thus the above
assumption requires the model to be re-trained every time.
To address such an issue, zero-shot sketch-based image re-
trieval (ZS-SBIR) [5][6] is gaining increasing attention, where
the query sketches and database images belong to novel
categories, which are not seen during training. A degraded
retrieval performance of standard SBIR methods has been

observed in [6] for such protocol. A generative-model based
retrieval [6] along with fusion-network based latent-space
learning [5], semantic-aware cycle-consistent network [7] have
been proposed in recent literature to address ZS-SBIR.

We address ZS-SBIR by separating both sketches and
images into their domain-independent content and domain and
data specific variations or styles. The content lies in a latent-
space shared by both domains [4][3] and follow a meaningful
semantic order. We propose to obtain the initial list of retrieved
images by matching the content-information extracted from
query sketch and database images in this latent space. How-
ever, motivated by the better recognition performance in the
image-space, compared to the semantic-space, as in [8] (for
the task of zero-shot learning), we further propose to refine
the latent-space rank-list based on the matching in image-
space. Specifically, given the top-K images based on content-
matching in the latent-space, we fuse the sketch query content
with the specific styles of each of these images to generate
K-fake images, which are finally used to re-rank the initial
retrieved list. We refer to the proposed style-guided generation-
based retrieval network as StyleGuide.

An extension to the ZS-SBIR protocol is discussed in [7],
where the search-set contains images from both seen and
unseen categories and is referred to as generalized ZS-SBIR.
Intuitively, the retrieval performance should decrease in such
scenario, since the presence of seen class images in the search
set poses a higher degree of confusion for the algorithm. To
mitigate this, we propose a novel approach for detecting the
unseen class images in the search set prior to retrieval. Since
the query sketch belongs to an unseen class, the images,
predicted to belong to the seen class set by the proposed
algorithm, can be removed from the search set. This allows the
query to be searched against a smaller subset of the database,
resulting in faster retrieval and improved retrieval accuracy.
The key-contributions of this work are summarized below.
• We propose a style-guided image generation during re-

trieval to eliminate the effect of domain difference and
intra-class variations for improved performance.

• We effectively utilize the concepts of content-style sep-
aration for ZS-SBIR, by separating the original data
representations into a semantic-aware domain-invariant
content and domain and data specific variations/style.

• We propose a novel unseen class detection mechanism
to reduce the search set for generalized ZS-SBIR for
improved retrieval performance.

• Experiments on two large-scale sketch-image datasets,
Sketchy extended [9] and TU-Berlin [10], and extensive
analysis with different variants of the proposed approach
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show the effectiveness of the proposed framework.
This is an extended version of our previous work [11],
which proposes a content-style disentanglement based retrieval
framework for ZS-SBIR and generalized ZS-SBIR. The rest
of the paper is organized as follows. Section II gives a brief
description of the related work. Our proposed approach for
ZS-SBIR is discussed in Section III, and that for generalized
ZS-SBIR in Section IV. This is followed by extensive exper-
iments (Section V) and analysis (Section VI) and conclusion
in Section VII.

II. RELATED WORK

In this section, we briefly review the current literature in
the field of SBIR, ZSL, novelty detection, ZS-SBIR as well
as the content-style disentaglement methods.
Sketch-based Image retrieval (SBIR): The domain-gap be-
tween sketch and image representations is the main challenge
addressed in SBIR. Early methods used specially-designed
hand-crafted features [12][13] for both sketches and the edge-
maps extracted from images to account for the domain-
difference. With the advances in deep learning, siamese net-
works [14], triplet-loss [9] or contrastive-loss [15] based end-
to-end learning models, as well as their combinations [16]
have been proposed for the same. [3] proposes a heterogeneous
network, which exploits deep-features of sketches, images and
the edge-maps to retrieve images for a hashing-based SBIR
protocol. A generative model is proposed to generate images
from sketches towards the goal of hashing-based retrieval
in [17]. A non-deep shared-space learning method exploiting
curriculum learning is proposed in [4]. [18] addresses a variant
of SBIR, where the preferred aesthetic style of the retrieved
images is also specified with the query.
Zero-shot Sketch-based Image Retrieval (ZS-SBIR): The
experimental protocol for SBIR is generalized to ZS-
SBIR [5][6][7], where the sketch query and database images
are from categories other than the training categories. In [5],
a sketch-image feature fusion-based end-to-end model is pro-
posed, which has a very high memory requirement [7]. [6]
propose a sketch-to-image feature generation and voting-based
image retrieval at the image feature-space; but restricts the
model to be learned with paired data only. A semantically-
aligned latent-space learning is proposed in [7], which involves
learning two GANs. A new large-scale sketch-image dataset is
proposed in [19], and a triplet-loss based network is presented
to address ZS-SBIR.
Zero-shot learning (ZSL): A related research area is ZSL,
which addresses the problem of classifying images from
unknown categories. A latent-space learning approach [20][21]
is quite popular for the same, which transforms the image fea-
tures and class-semantic information (attributes) to a common-
space for matching. In contrast, synthsizing image features
for unseen classes, using generative models [8][22][23] and
training a classifier using the same have obtained state-of-the-
art performance for ZSL.
Novelty Detection: Novelty detection [24] or out-of-
distribution sample detection [25] is a popular research topic
in computer vision. Such techniques have been used to

address the problem of generalized ZSL in [26][27][28].
While [26][27] exploits novelty detection to decide on the
choice of classifier for the test sample, [28] uses an auto-
encoder (AE) based network which demonstrates a higher
reconstruction error for novel class samples.
Content-Style disentanglement: The successful use of
content-style disentanglement [29][30] for various applications
of computer vision [31][32][33] motivates our approach for
ZS-SBIR. However, the decomposition of samples in content
and style in our case, is with the sole purpose of better retrieval
for ZS-SBIR and thus differs significantly from other work in
literature, which we will discuss later.

III. PROPOSED STYLEGUIDE FOR ZS-SBIR

We explain our StyleGuide framework in details in this
section. We propose to generate fake image features by fusing
the sketch-query content and individual styles of the database
images and utilize these fake images to retrieve relevant
images from the database. With such style-guided fake image
generation, StyleGuide can reduce the domain difference and
image-specific variations, which results in improved retrieval
performance. Towards that goal, we design two modules,
(1) content-style decomposition module; and (2) content-style
fusion module to generate fake image features. We will now
describe these modules in details in the following sub-sections.
Figure 1 illustrates the proposed approach.
Notations: The available sketch and image data for training
are Strain = {Si, l(S)i }

NS
i=1 and Itrain = {Ii, l(I)i }

NI
i=1 respec-

tively. l(S)i (or l(I)i ) represents the label of ith sketch Si (or
image Ii) and l

(S)
i , l(I)i ∈ Yseen, ∀i, where Yseen represents

the set of training classes (seen classes). In contrast to the ex-
isting literature, no pairing [6] or same index [7] assumptions
for training data are considered in our work. The testing sketch
and image data for ZS-SBIR are, Dsketch = {Sj , l(S)j }

MS
j=1

and Dimage = {Ij , l(I)j }
MI
j=1 respectively, where l

(S)
j , l(I)j ∈

Yunseen and Yunseen ∩ Yseen = φ. For generalized ZS-
SBIR, Dimage = {Ij , l(I)j }

Mg
I

j=1, where l(I)j ∈ Yseen ∪Yunseen.
Obviously, the labels of the images and sketches are not
available to the algorithm during testing.
Feature representation: We obtain data features using pre-
trained convolutional networks (CNN), by separately fine-
tuning them with Strain and Itrain. These fine-tuned networks
are kept fixed for the rest of the training.

A. Content-Style decomposition module

The CNN-training is based on label-based loss for classifi-
cation [34]; however, the extracted features contain domain-
specific information of data, since the fine-tuning is performed
separately on sketches and images. We aim to decompose these
features into domain-independent content representation and
style, which contains the domain-dependent part and residual
data-specific information, using the proposed content-style
decomposition module. Though this decomposition is inspired
by [30], there are important differences which are explained
later. Here, we learn two encoders ES and EI for sketches
and images respectively, to encode the content information as
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Fig. 1. (a) Illustration of the proposed StyleGuide framework for (a) Training and (b) Retrieval. (c) depicts the retrieval workflow using proposed novelty
detetction module CDP-NDh in addition with StyleGuide for generalized ZS-SBIR.

z
(m)
i = Em(x

(m)
i ), where m ∈ {S, I} in a shared-space. As in

ZSL [35], to ensure better generalization of the model towards
the unseen categories, we enforce these shared representations
to be similar to their respective category-name embeddings,
h(l

(m)
i ),m ∈ {S, I}. Thus, given a sketch S (or image I), the

probability that the sample belongs to the category l(S) (or
l(I)) in the shared space is measured as

p(l(m)|x(m)) =
e−αd(z

(m),h(l(m)))∑
l(m)∈Yseen

e−αd(z(m),h(l(m)))
, m ∈ {S, I}

(1)

where, d(z(m), h(l(m))) represents the distance between the
extracted content and the category-embedding. Thus, the
latent-space representations are learned with distance-based
cross-entropy loss on ES and EI as,

Lm = −log p(l(m)|x(m)), m ∈ {S, I} (2)

Such category-embedding guided learning of latent-space em-
beds unseen class samples close to semantically similar seen
classes, which minimizes the cross-domain distance between
unseen class samples of the same category.

In the second stage of the decomposition, styles present
in x(m),m ∈ {S, I} is captured. Following [30], we learn
two style encoders FS and FI for sketches and images,
such that the learned styles s(m),m ∈ {S, I} contain all
domain and data dependent information, which are not useful
from recognition perspective. Additionally, we learn decoder
networks Dm(z(m), s(m)),m ∈ {S, I} to reconstruct back the
corresponding features, x(m). Thus, the joint loss function to
be minimized at this stage is

Lstyle = Lrecm − γLadvm (3)

where, Lrecm = ||x(m) − Dm(z(m), s(m))||2 is the sample-
reconstruction loss and Ladvm = −log padv(l(m)|x(m)) is the
adversarial loss component to ensure that the style features
s(m) does not contain any useful information. padv(l(m)|x(m))
is measured as softmax(s(m)) and γ is a hyper-parameter.
In our implementation, the encoders consist of two fully-
connected (fc) layers with ReLU activation. The decoder
networks consist of a concatenation layer followed by two
fc layers with ReLU-activation.

B. Content-Style fusion module

To generate style-guided image using the query content
and search-set image styles, we design a content-style fu-
sion module. A concatenation-based fusion network Gf is
designed to combine cross-domain content-style features for
meaningful fake image feature generation. We fix the de-
composition module of StyleGuide and construct a triplet
set T = {Si, I+i , I

−
i }Ni=1 from Strain and Itrain, such that,

l
(S)
i = l

(I+)
i and l

(S)
i 6= l

(I−)
i to train Gf . Generated

image features x̂(I) = Gf (z
(S), s(I)) follow a margin-based

categorical similarity by minimizing the ranking loss function,

LtripletI =

N∑
i=1

max {0, [d(x̂(I)
i ,x

(I+)
i )− d(x̂(I)

i ,x
(I−)
i ) +M ]}

where, margin M is set experimentally. Essentially, Gf gen-
erates fake image features closer to other real features from
the same class (image matching problem). Proposed fusion
module contains a concatenation layer followed by two fc
layers with ReLU activation.

C. Retrieval methodology

In this work, we address category-based ZS-SBIR prob-
lem [5][6], where the evaluation involves matching only the
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category of query sketch and retrieved images.
a) Retrieval at the Latent Space: Given a sketch query x

(S)
q

and a database of images Dimage = {Ite}, we construct initial
rank-list based on the ascending Euclidean distance between
their content-information (z(S)q and z

(I)
te ) at the latent-space.

b) Retrieval at the Image Space: In the second step of
retrieval, we select top-K images from the intial rank-list to
construct the pruned rank-list Rlatent. We further fuse z

(S)
q

and {s(I)te }Kte=1 using Gf to generate K-fake image features as
{x̂(I)

te }Kte=1. Such fusion eliminates the domain and instance-
specific variations and thus the Euclidean distance between
x̂
(I)
te and x

(I)
te reduces further in case they belong to the

same category. On the basis of this newly computed distance
d(x̂

(I)
te ,x

(I)
te ), we re-rank Rlatent to obtain an improved rank-

list Rfinal. Even though such a retrieval mechanism appers to
be similar as content-matching, we observe significant perfor-
mance difference by using such image-space retrieval (details
in Experiments section), which is consistent with results
(better image-domain matching compared to semantic-space
matching) reported in [8] for ZSL.

D. Difference with Existing Work

Difference with [6]: CVAE and CAAE are two ZS-SBIR
methods, which generate image features from a given sketch
for retrieval. However, (1) our model works for unpaired
image-sketch data, overcoming CVAE’s requirement of paired
data; and (2) StyleGuide fuses image-specific styles with
sketch-content and uses these fake images for retrieval. In
contrast, CVAE generates samples from Gaussian noise and
employs a voting methodology for retrieval.
Difference with [30]: [30] proposes a general-purpose
content-style disentanglement technique, whereas we design
the decomposition for the final goal of retrieval. StyleGuide
uses a distance-based cross-entropy loss in contrast to the
class-probability based classification loss as in [30]. Our
style-definition is also significantly different. We encode the
domain-specific knowledge, as well as intra-class variations in
the style-vectors, whereas [30] encodes the class-independent
information as style.

IV. PROPOSED APPROACH FOR GENERALIZED ZS-SBIR

In real scenarios, the database may contain images from
both seen and unseen classes, which makes the problem much
more challenging. The experimental protocol for generalized
ZS-SBIR [7] is based on this intuition, where the sketch from
an unseen class is queried against a search set of images from
both seen and unseen classes. As expected, we observe in [7]
and also from our experiments, that the retrieval accuracy
for all algorithms drop significantly in this case. Clearly,
the presence of images from seen classes in the database
increases the chances of confusion which results in degraded
performance (more analysis in the Experiments section).

With the prior knowledge that the query sketch belongs
to the set of unseen classes, it is intuitive that, an effective
method for detecting which search-set image sample belongs
to the seen and unseen (novel) classes can be useful in such

retrieval scenario. Identification of images belonging to seen
or novel classes have also been used successfully to improve
the performance of GZSL for classification [26][27]. With
this motivation, we propose a simple, yet effective approach,
namely CDP-ND (cross-domain prototype based novelty
detection), which successfully utilizes both the seen image
and sketch data to infer whether an image in the database
(Dimage) belongs to the seen or novel classes. Thus the query
sketch needs to be searched only against the newly constructed
set D(u)

image, consisting of images from the unseen classes.
We propose two variants of the CDP-ND - (1) CDP-NDs: In
this soft version of CDP-ND, we use the computed novelty
measure to appropriately weigh the similarity scores of the
query to the database images; (2) CDP-NDh: In this hard
version of CDP-ND, we use the threshold-based computation
of novelty measure to determine whether the database
image should be compared with the query or not. Now, we
discuss the different steps of the proposed CDP-ND in details.

Cross-domain Prototype Computation: Towards the goal of
detecting unseen class images in the search set, we compute
a set of class-prototypes as, Pseen = {pj , j ∈ Yseen}, which
are stored in the memory after training. In this work, we
exploit the sketch-image cross-domain similarity information
to compute these seen class prototypes. The class prototypes
are expected to be a reasonable representation of all the
sketch-image samples in the latent space. Thus, we propose
to compute the prototypes as the mean content vector of the
good training samples (both image and sketch). The measure
of such goodness condition of a sample is evaluated in terms
of the retrieval accuracy of the corresponding sample in the
latent space. Thus, the set of good samples is constructed as

Cgood = {z(m)
i |AP (z(m)

i ,Rlatent,M) ≥ δ} (4)

Here, AP (z(m)
i ,Rlatent,M) represents the average precision

measured on the top-M retrieved images in Rlatent on the
basis of sorted Euclidean distance with z

(m)
i . δ acts as a

threshold for selecting a sample on the basis of its goodness.
Thus the set of good samples of class-j is given as

Cj = {z(m)
i |l(m)

i = j, and z
(m)
i ∈ Cgood},m ∈ {S, I} (5)

from which the prototype of class-j is computed as

pj = mean(Cj) (6)

Here, the good training examples are only used to compute
pj instead of all samples of jth class, so that the outliers do
not adversely effect the computed prototypes. An advantage
of the proposed novelty detection approach is that the training
process need not be modified. The distance of each database
image with these prototypes are used to weigh the similarity
score in CDP-NDs or to classify them as belonging to seen
or novel classes in CDP-NDh as described below.

GZS-SBIR using proposed CDP-NDs: In this variant,
the query sketch is compared with all the database images,
but each image is given a weight corresponding to its chance
of belonging to a seen or novel class. The intuition is that if
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a database image belonging to an unseen class is incorrectly
labeled as belonging to a seen class using the prototypes, that
image is not removed from the comparison set and can still
be retrieved if the similarity score is considerably high.

Towards that goal, we compute similarity scores between
the database image contents z

(I)
te , s.t., Ite ∈ Dimage and the

saved class-prototypes Pseen as

score(z
(I)
te ,pj) = cosine similarity(z

(I)
te ,pj) (7)

If Ite belongs to one of the seen classes, then it should have a
high similarity score with that particular class prototype. On
the other hand, if it belongs to a novel class, it will have low
similarity values with all the seen class prototypes. Hence,
we consider the maximum similarity score as the prototypical
similarity of the test sample, which is evaluated as

scorep(z
(I)
te ) = maxj score(z

(I)
te ,pj) (8)

Let the similarity score between this image sample and the
test sketch query Sq be given by

scoreq(z
(I)
te , z

(S)
q ) = cosine similarity(z

(I)
te , z

(S)
q ) (9)

The final novelty-weighted similarity score for z
(I)
te used for

retrieval is computed as (arguments dropped for clarity)

scorefinal = scoreq(1− scorep) (10)

We observe that the prototypical similarity score is used to
softly weigh the content-based similarity score. If a database
image is likely to belong to one of the seen classes, scorep is
higher, which in turn will give a lower weight to scorefinal.
On the other hand, if the database image is likely to belong
to a novel class, scorep is significantly lower, which results
in a comparatively higher weight for scorefinal. Hence,
CDP-NDs enables the algorithm to retrieve the unseen class
images with a high probability compared to the seen class
image samples present in the database.

GZS-SBIR using proposed CDP-NDh: In this variant, we
propose to use the similarity of each database image with the
seen class prototypes Pseen to completely separate out the
data from the seen and novel classes. Thus the query sketch
(which belong to an unseen class) can be compared to a
significantly smaller set of images which are likely to belong
to the unseen classes.

Before retrieval, we compute the cosine-similarity between
the content-encoding z

(I)
te of database image samples Ite ∈

Dimage and saved class-prototypes Pseen as in (7). Since the
unseen class images are expected to have lower similarity com-
pared to the seen class samples with the prototypes, based on
the similarity scores, the refined search-set D(u)

image ⊂ Dimage
is constructed as,

D(u)
image = {Ite|score(z

(I)
te ,pj) < ε,∀j ∈ Yseen} (11)

Here, ε is an experimental hyper-parameter which acts as
the threshold to detect the novel classes. Thus, once D(u)

image

is constructed, the same retrieval methodology (as described
in Section III-C) is used on D(u)

image for final retrieval.

V. EXPERIMENTS

Here, we present the results of the experiments performed to
evaluate the effectiveness of the proposed approach. First, we
provide a brief description of the datasets used in this work.

A. Datasets and Implementation Details

The Sketchy Dataset [9] is a collection of 75,471 sketches
and 12,500 images from 125 classes. We used the extended
dataset [3] containing additional 60,502 images. For ZS-
SBIR, experiments are performed on two different data-splits
proposed in literature. In the first split (Split 1), randomly
chosen 25 classes are considered as unseen and rest 100 classes
are used for training. In contrast, [6] proposes another data-
split (Split 2), where 21 categories which are not part of the
ImageNet [36] are selected as unseen and the rest are used for
training. This split ensures that the unseen classes are truly
unknown to the model, even though pre-trained models are
used for feature representation.

TU-Berlin dataset [10] contains 20,000-sketches from
250 categories and is extended by [3] with 2,04,489 natural
images. A random split of 220 training classes and 30 testing
classes with at least 400 images per category are used in
literature [5][7] for ZS-SBIR.

Implementation Details: StyleGuide is implemented in
TensorFlow [37]. All hyper-parameters are tuned based on the
accuracy on validation set, constructed as 10% of the training
set. We fine-tuned pre-trained VGG-16 separately for training
images and sketches and fc7-features are considered as
x(m),m ∈ {S, I}. The category-name embeddings h(.) (200-
d) are extracted using pre-trained GloVe [38] model. z(m)

and s(m),m ∈ {S, I} are restricted to be of 200-d and 100-d,
respectively. Adam optimizer with β1 = 0.5, β2 = 0.999, a
learning rate of 10−3 for content-style decomposition and
10−4 for fusion with a batch-size of 64 and 32 for Sketchy
and TU-Berlin, respectively are used.

B. Experients for ZS-SBIR protocol

We compare StyleGuide with state-of-the-art SBIR methods
and ZSL algorithms. For direct comparison with results in
literature, we perform experiments on both splits of Sketchy
and standard split of TU-Berlin.

Table I reports the results on Sketchy (Split 1) and TU-
Berlin (standard ZS-SBIR split as in [5][7]) in terms of
MAP@all and Precision@100. All the results for the other
approaches are taken from [7]. We observe that the proposed
StyleGuide outperforms the state-of-the-art on Sketchy. For
TU-Berlin, we achieve second best performance, which is
only less than [7] and better than all the others. We perform
additional experiments on Sketchy Split 2. Table II reports
MAP@200 and Precision@200 for the same. Here, the results
of the other approaches are directly taken from [6]. Our
search-set specific style-guided retrieval clearly outperforms
all approaches, including both noise-based generation methods
CVAE and CAAE, by significant margins.
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TABLE I
COMPARISON (PRECISION@100, MAP@ALL) OF STYLEGUIDE WITH ZS-SBIR METHODS ON SKETCHY (SPLIT 1) AND TU-BERLIN.

Type Methods Sketchy (Split 1) TU-Berlin
Precision@100 MAP@all Retrieval time (sec.) Precision@100 MAP@all Retrieval time (sec.)

SBIR

Softmax Baseline 0.172 0.114 3.5× 10−1 0.143 0.089 4.3× 10−1

Siamese CNN [14] 0.175 0.132 5.7× 10−3 0.141 0.109 5.9× 10−3

SaN [39] 0.125 0.115 4.8× 10−2 0.108 0.089 5.5× 10−2

GN Triplet [9] 0.296 0.204 9.1× 10−2 0.253 0.175 1.9× 10−1

3D shape [40] 0.078 0.067 7.8× 10−3 0.067 0.054 7.2× 10−3

DSH [3] 0.231 0.171 6.1× 10−5 0.189 0.129 7.2× 10−5

GDH [17] 0.259 0.187 7.8× 10−5 0.212 0.135 9.6× 10−5

ZSL

CMT [41] 0.102 0.087 2.8× 10−2 0.078 0.062 3.3× 10−2

DeViSE [42] 0.077 0.067 3.6× 10−2 0.071 0.059 3.2× 10−2

SSE [43] 0.161 0.116 1.3× 10−2 0.121 0.089 1.7× 10−2

JLSE [44] 0.185 0.131 1.5× 10−2 0.155 0.109 1.4× 10−2

SAE [20] 0.293 0.216 2.9× 10−2 0.221 0.167 3.2× 10−2

FRWGAN [45] 0.169 0.127 3.2× 10−2 0.157 0.110 3.9× 10−2

ZSH [46] 0.214 0.159 5.9× 10−5 0.177 0.141 7.6× 10−5

ZS-SBIR

ZSIH [5] 0.342 0.258 6.7× 10−5 0.294 0.223 7.7× 10−5

ZS-SBIR [6] 0.284 0.196 9.6× 10−2 0.001 0.005 1.2× 10−1

SEM-PCYC [7] 0.463 0.349 1.7× 10−3 0.426 0.297 1.9× 10−3

StyleGuide 0.4842 0.3756 1.6× 10−2 0.3551 0.2543 5.7× 10−2

TABLE III
COMPARISON (PRECISION@100 AND MAP@ALL) OF THE PROPOSED METHOD WITH STATE-OF-THE-ART ZS-SBIR METHODS ON SKETCHY (SPLIT 1)

AND TU-BERLIN DATASETS FOR GENERALIZED ZS-SBIR PROTOCOL.

Methods
Sketchy (Split 1) TU-Berlin

Precision@100 MAP@all Retrieval time (sec.) Precision@100 MAP@all Retrieval time (sec.)

ZSIH [5] 0.296 0.219 6.7× 10−5 0.218 0.142 7.7× 10−5

SEM-PCYC [7] 0.364 0.307 1.7× 10−3 0.298 0.192 2.0× 10−3

StyleGuide 0.3811 0.3307 1.6× 10−2 0.2264 0.1488 5.7× 10−2

StyleGuide + Openmax-based ND [24] 0.3771 0.3382 7.1× 10−2 0.2295 0.1501 1.8× 10−1

StyleGuide + AE-based ND [28] 0.4030 0.3500 3.9× 10−2 0.2346 0.1533 3.2× 10−2

StyleGuide + CDP-NDs 0.4317 0.3529 8.4× 10−2 0.2764 0.1966 9.3× 10−2

StyleGuide + CDP-NDh 0.4533 0.3671 5.0× 10−2 0.2911 0.2146 6.7× 10−2

TABLE II
COMPARISON (PRECISION@200 AND MAP@200) WITH EXISTING

ZS-SBIR METHODS ON SKETCHY (SPLIT 2) DATA.

Type Evaluation methods Precision MAP
@200 @200

SBIR methods

Baseline 0.106 0.054
Siamese-1 [47] 0.243 0.134
Siamese-2 [15] 0.251 0.149

Coarse-grained Triplet [9] 0.169 0.083
Fine-grained Triplet 0.155 0.081

DSH [3] 0.153 0.059

ZSL methods
Direct Regression 0.066 0.022

ESZSL [21] 0.187 0.117
SAE [20] 0.238 0.136

ZS-SBIR
CAAE [6] 0.260 0.156
CVAE [6] 0.333 0.225

StyleGuide 0.4001 0.3581

C. Experiments for Generalized ZS-SBIR protocol

We report the retrieval results of StyleGuide (without the
proposed novelty detection) for generalized ZS-SBIR in the
top half of Table III. The results for the other algorithms are
directly taken from [7]. We observe StyleGuide achieves state-

of-the-art results for Sketchy dataset, and performs slightly less
than [7] for TU-Berlin.

We also observe that retrieval MAP for all the approaches
is significantly lower compared to ZS-SBIR (Table I). The
presence of seen class images in the search set makes
generalized ZS-SBIR even more challenging. We notice the
same in Fig. 2 displaying top-5 retrieved images for sample
sketches for both ZS-SBIR (left) and generalized ZS-SBIR
(right). The wrongly retrieved images for generalized ZS-
SBIR are mostly from the set of seen classes. Motivated by
this, we perform the unseen class image detection prior to
retrieval, so that the seen class images in the database can
either be weighted less or removed from comparison.

Generalized ZS-SBIR results with novelty detection:
Here, we explore whether novelty detection techniques can be
utilized to improve the retrieval performance in generalized
ZS-SBIR by trying to answer the following questions.

1) Since our goal is to identify if a given image belongs to
the unseen class or not, can standard novelty detection
techniques developed solely for images be used to
improve the retrieval results?
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Fig. 2. Top-5 retrieved images for same sketch query for ZS-SBIR (left) and generalized ZS-SBIR (right). The correctly retrieved images are highlighted
with a green border in both cases.

2) How does CDP-ND which utilises both the sketch and
image domains compare with these techniques?

To answer the first question, we choose the following two
algorithms which have been developed for multi-class nov-
elty detection for image data, namely (1) Openmax [24],
and (2) AE-based novelty detection [28].
(1) Openmax [24]: In this method, for a test image sample,
the softmax probabilities of the known classes are re-weighted
according to the statistics of the training samples near the
boundary regions of the respective class. These statistics are
evaluated by fitting Weibull distribution on such samples.
Such re-weighted probability scores open-up the detection
probability of unknown unknown samples in the test set. We
follow the same re-weighting strategy using the seen class
probabilities p(l(I)|x(I)

te ) (as in (1)). During retrieval, only the
predicted unseen class images are considered as D(u)

image and
used as the effective search set as in Section III-C.
(2) Auto-encoder-based novelty detection [28]: In this algo-
rithm, an auto-encoder (AE) architecture has been modified to
obtain a novelty score associated with an image, based on the
intuition that the reconstructed image should be significantly
degraded in quality in case the input image sample belongs to
a class previously unseen to the AE. We use model-2 (M-2)
mentioned in this work which uses the degraded reconstruction
criteria when the input image is paired with incorrect class-
attribute and gives better results as compared to the alternate
model (M-1). Using this approach, we construct D(u)

image and
then use the retrieval methodology of StyleGuide.

The retrieval performance of StyleGuide combined with
these two novelty detection methods for generalized ZS-SBIR
is reported in the bottom half of Table III. We observe
noticable improvement in MAP for both the datasets using [28]
as the novelty-detector.

Fig. 3. Novelty detection accuracy using (a) AE-based novelty detector [28],
(b) proposed CDP-NDh on the search-set images Dimage of Sketchy Split 2.

Generalized ZS-SBIR results with CDP-ND: Now to answer
the second question, first we evaluate the accuracy of the
proposed CDP-ND to classify a given image as seen or
novel as compared to the AE-based novelty-detector [28]. We
observe from the confusion matrix in Fig. 3 that CDP-NDh
performs better than the AE based approach on the search-
set images of Sketchy Split 2. The pattern is similar for the
other variant CDP-NDs. This motivates us to use the proposed
approaches for novelty detection for generalized ZS-SBIR.

Finally, we evaluate the effectiveness of the proposed CDP-
ND technique for generalized ZS-SBIR and report the results
of both the variants in the last part of Table III. We observe
that both the proposed variants help to considerably boost the
retrieval performance, and interestingly, the hard thresholding
variant CDP-NDh performs better than the softer weighting
version CDP-NDs. We also observe that StyleGuide with CDP-
NDh outperforms the state-of-the-art for both the datasets.
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TABLE IV
ANALYSIS WITH DIFFERENT BASELINES.

Description (ZS-SBIR) MAP@200
B1: Content-based retrieval in the shared space 0.3280
B2: Label-based CE-loss for content-style decomposition 0.3228
B3: Score-fusion 0.3213
B4: Single fake-image (with random style) based retrieval 0.2854
StyleGuide 0.3581
Description (generalized ZS-SBIR) MAP@200
StyleGuide 0.2872
StyleGuide+CDP-NDle

h 0.2935
StyleGuide+CDP-NDptn

h 0.3139
StyleGuide+CDP-NDimage

h 0.3102
StyleGuide+CDP-NDh 0.3317

VI. ANALYSIS AND DISCUSSION

We perform detail analysis of our framework in this section.
Specifically, we discuss different variants of the framework to
better understand the usefulness of each network components.
All the analysis are performed on Sketchy extended (Split-2)
dataset, unless specified otherwise.
1) Variations for ZS-SBIR: We analyze StyleGuide by
developing different baselines by modifying individual
modules or the loss-terms. The results obtained are reported
in Table IV. In B1, the images are retrieved only through
the content-matching of sketches (z(S)) and images (z(I))
in Rlatent. B2 reports the results when EI and ES are
trained using standard cross-entropy loss using class labels
instead of category-word vectors. The retrieval accuracy
is lower in such case, since such loss function does not
contain any semantic information about the categories. In
B3, final retrieval accuracy is measured on the basis of
fused similarity-values in both content and image-space.
However, to our surprise, this did not yield any improvement
over proposed StyleGuide-retrieval. Possible reason may be
the style-guided reconsruction of images may not contain
any complimentary information to boost the performance
further. Finally, in B4, we generate single fake image from
the query by fusing it with randomly selected style from
the database, instead of an image-specific style in Rlatent.
We perform retrieval on the basis of similarity of this single
generated image with all the images in search set and observe
a considerable drop in the performance which justifies the
importance of selection of styles. The full proposed model,
with style-based final ranking, produces the best result.

2) Variations for generalized ZS-SBIR: In the proposed
novelty detection framework, we compute the prototypes for
each seen class by utilizing good samples from both the
sketch and image domains. We further evaluate the retrieval
performance using different variants for computing the seen
class-prototypes: (1) Label embeddings (LE): Since the latent-
space construction in our approach (equation (2)) is based on
the label embeddings of the seen classes, we can take these
embeddings (h(lI)) of seen class labels to be the prototypes,
i.e. pj = h(l

(I)
j ). This variant is denoted as StyleGuide+CDP-

Fig. 4. Comparison of scorep for seen and unseen classes using prototype-
variants: (a) CDP-NDle

h , and (b) CDP-NDh on Sketchy Split 2. The scores
for unseen classes are highlighted with red-color.

NDleh . (2) Prototypical Networks (PTN): [48] describes an
end-to-end deep network for few-shot learning applications
based on episodic training to obtain prototypes of the training
classes. In this variant, we use PTN to generate the seen
class image prototypes. However, instead of selecting a set
of training classes in each episode, we follow the standard
mini-batch training and the loss on the image samples in the
validation set is minimized. After training, the class prototype
is evaluated as, pj =

∑
P z(I), s.t., P = {z(I)|l(I) = j}.

This variant is denoted as StyleGuide+CDP-NDptnh (3)
Single-domain based prototypes: To evaluate whether using
both domain data helps in computing better prototypes, in
this variant, we use only the good image data to construct the
Cgood in (4). The class prototypes are evaluated accordingly.
This variant is denoted as StyleGuide+CDP-NDimageh .

The evaluation results using all these variants are reported in
Table IV. We observe that the proposed approach of computing
the seen class prototypes utilizing both sketch and image data
outperforms all the other variants. Fig. 4 shows the scorep-
value (8) averaged over all the samples in a particular class
present in Dimage for generalized ZS-SBIR for both CDP-
NDleh and CDP-NDh. We observe a clear discrimination in
scorep for seen and unseen classes for CDP-NDh as compared
to CDP-NDleh , which justifies its better detection and retrieval
accuracy. The other variations of CDP-NDh display a similar
pattern as CDP-NDleh and hence are not included here.

VII. CONCLUSION

In this work, we proposed a novel approach based on
content-style decomposition, termed as StyleGuide for the
challenging task of ZS-SBIR. We also extended our framework
for generalized ZS-SBIR protocol using a novel unseen-
class image detection mechanism CDP-NDh, which provides a
significant boost to the performance of StyleGuide in such gen-
eralized setting. Using such a detection method, our approach
can seamlessly be applied to cases where even the a-priori
knowledge of the unseen class query sample is not available.
Extensive experiments and analysis has been performed and
proposed StyleGuide in combination with CPD-NDh is ob-
served to outperform state-of-the-art retrieval methods on two
large-scale datasets.
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