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1. Introduction

There has been a lot of previous work in the area of
cross-modal scene understanding, especially for the tasks of
image captioning [32] and the related task of dense caption-
ing [18]. However, the research has been focused on dense
captioning for 2D data only, until recently, Scan2Cap has
proposed a method for dense captioning of RGB-D scans
[S]. The task of 3D dense captioning consists of taking a
3D point cloud as input and predicting the bounding boxes
of objects in the scene as well as their corresponding natu-
ral language descriptions. The biggest challenges in dense
captioning are successfully modeling the relations between
objects and leveraging the 3D information of objects, such
as actual object size or object location, and thus achieving
more accurate descriptions.

To deal with these challenges, Scan2Cap has coupled a
3D detection network with a graph module and an attention-
based captioning module to create a powerful method that is
trained end-to-end. Scan2Cap has leveraged the 3D repre-
sentation of the scenes and has significantly outperformed
state-of-the-art 2D captioning methods. In this work, we
wanted to explore several modifications and improvements
to Scan2Cap architecture. Our main contribution is replac-
ing the old feature extraction backbone with a new, more
powerful one. We explain our proposed modification in
Section 4]

2. Related Work

3D Object Detection: The availability of large 3D
datasets [8| [1]] has helped in research on 3D object detec-
tion and instance segmentation tasks. Several methods have
been proposed for task of object detection [30, 13} 23 16] and
also for instance segmentation [[16].

3D vision and Language: The idea of grounding visual
stimulus in natural language and vice-versa has gained lot of
attention with introduction of tasks such as image caption-
ing, dense captioning and text-to-image generation [26} 27]]
or visual grounding [15,20]. However, vision and language
in 3D still remains relatively unexplored [S].

Image Captioning: Johnson et al. in their work [[17]], intro-
duced a dense captioning task. Their work relates signifi-

Anurag Singh
Technical University of Munich

cantly to Dense captioning in 3D. The task generates image
captions for all objects in an image. However, the limita-
tions of the method are that it doesn’t consider regions out-
side salient regions. In [33] Yang et al, propose a method
to overcome this issue by having global features as input to
the captioning module. However, most dense image cap-
tioning works suffer from constraints of a single view and
are sub-optimal in capturing larger context available in a 3D
scenel[3]].

3. Point-set vs SparseConv

The two main types of architectures used for deep learn-
ing on point clouds have been point-set networks [24} 25]]
and sparse convolutional networks [[11} 12, 13} [7, [29] 28]].

Point-set networks treat input scenes as unstructured sets
of points. The main building blocks of point-set networks
are fully-connected layers and pooling operations. The ad-
vantages of point-set networks are their lower memory re-
quirements, faster training, and inference. The downside is
that they don’t use the spatial structure of the point cloud
very well. This results in lower accuracy, dependence on
the sampling quality, and worse performance on incomplete
objects.

Sparse convolutional networks, represent pointclouds
as sparse 3D voxel grids and the main layer is a sparse
convolution. The spatial structure introduced by voxel grids
and convolutions is very beneficial for processing point
clouds. Sparse convolutional networks are consistently
outperforming other architectures in terms of accuracy in
most 3D understanding benchmarks [30} 18} 31 (9, [10].

4. Method

Our project explores how sparse convolutional backbone
affects the accuracy of object detection and dense caption-
ing. Scan2Cap uses VoteNet for object detection, which is
a point-set network. We aimed to replace it with a SparseC-
onv detector hoping to improve both detection and caption-
ing quality. Scan2Cap architecture (shown in Fig[I)) can be
summed up as follows. First, a feature extraction backbone
is used to process the point cloud. Then, the enriched rep-
resentation of the point cloud is passed into the detection
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Figure 1: An overview of the Scan2Cap architecture.[J]]
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Figure 2: Architecture of our SparseUnet backbone. D specifies the number of channels in the layer. Downsampling blocks
are sparse convolutions with stride 2, upsampling blocks are sparse transposed convolutions with stride 2. [7]

modules, which locate the objects in the scene and predict
bounding boxes and classes for each of the detection pro-
posals. Detected objects are then passed into the graph and
captioning modules to generate a text description for each
of the detections. The quality of captions depends both on
the accuracy of the detector and the quality of representa-
tion extracted by the feature extraction backbone.

In this project, we change the first part of the pipeline,
the feature extraction backbone. Original Scan2Cap uses
PointNet++ as the backbone. PointNet++ is a point-set net-
work and we replace it with a SparseConv feature learning
backbone. In particular, we propose SparseUnet architec-
ture shown in Fig[2] Our SparseUnet backbone is inspired
by the semantic segmentation network proposed in [7].

Using SparseConv instead of a point-set network comes
at a cost of slower training and inference. This trade-off is
acceptable, as Scan2Cap is an offline method. Moreover,
as we will see in the experiments section, the difference in
speed between the two backbones becomes less significant
when they are used as part of Scan2Cap. This is due to the
fact that graph and captioning modules require a substantial
amount of processing time themselves.

4.1. Using other sparse convolutional detectors

It is possible to replace the whole VoteNet with the lat-
est state-of-the-art SparseConv detector. Good candidates
would be GSDN [14] or a modification of PointGroup [16].
Although these networks achieve high accuracy, they intro-
duce several other novelties compared to VoteNet, which

would make a direct comparison between a point-set net-
work and a SparseConv network not possible. For this rea-
son, we are keeping the voting and proposal modules from
VoteNet while only replacing the PointNet++ backbone. In
future work, VoteNet can be replaced completely by the lat-
est state-of-the-art SparseConv detection method.

5. Implementation Details

We base our implementation on the original Scan2Cap
code written in PyTorch [} 22]. We use MinkowskiEngine
to implement our sparse convolutional backbone[7]. We
adopt the training schedule and hyper-parameters used in
Scan2Cap. We use a single Nvidia 1080 TI GPU in all of
our experiments.

6. Experiments

Dataset: In our experiments we follow Scan2Cap and use
ScanRefer [4] dataset which contains 800 ScanNet scenes
with 11,046 objects and 51,583 corresponding text descrip-
tions. The descriptions contain information related to ob-
ject’s appearance and its spatial relationship with other an-
notated objects in the scene.

Data Representation: Points contain color, normals and
height from the ground as features. When using the Sparse-
Unet backbone, the input point cloud is voxelized at resolu-
tion 2cm. In contrast to Scan2Cap, we don’t use extracted
Enet features for the sake of simplicity.

Train&val splits: We use standard ScanRefer [4] bench-
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Figure 3: Object detection performance on table class over a scene for PointNet++ and SparseUnet backbones

mark split. Similar to Scan2Cap experiment settings, in our
experiments the 36,665 samples are taken for training and
9,508 for validation and also ensure that there is no scene in
common for val and train. Our results are reported on val
data as test set is hidden officially.

Evaluation Metrics: We follow Scan2Cap in choice of
evaluation metrics. For object detection, we use the stan-
dard mAP (mean average precision) metric. To measure the
quality of generated text descriptions we use image caption-
ing metrics CiDEr [31]], BLEU-4[21]], METEOR [2] and
ROUGE [19]. We evaluate both mAP and captioning met-
rics at two different IoU thresholds: 0.25 and 0.5. We use
C, B-4, M, R as abbreviations for the CiDEr, BLEU-4, ME-
TEOR and ROUGE metrics.

6.1. Object Detection:

We do a comparative study of 3D object detection per-
formance of SparseUnet and PointNet++ as described in
Table [T} We observe that SparseUnet reaches significantly
higher mAP scores, specially with a more challenging 0.5
IoU threshold.

backbone mAP@0.25IoU | mAP@0.5IoU
PointNet++ 51.64 28.80
SparseUnet 52.05 33.59

Table 1: Comparison of PointNet++ and SparseUnet on 3D
object detection task

6.2. Dense Captioning

Comparison of dense captioning performance can be
seen in Table 2] and Table 3] We see that SparseUnet out-
performs PointNet++ on most metrics. The highest gain is
observed for CiDer and BLEU-4.

backbone B-4 C M R
PointNet++ | 31.54 | 44.59 | 25.06 | 53.67
SparseUnet | 32.30 | 49.52 | 25.52 | 53.53

Table 2: Comparison of PointNet++ and SparseUnet on
dense captioning task with IoU threshold of 0.25

backbone B-4 C M R
PointNet++ | 21.67 | 31.58 | 21.10 | 43.87
SparseUnet | 23.37 | 35.59 | 21.66 | 44.34

Table 3: Comparison of PointNet++ and SparseUnet on
dense captioning task with IoU threshold of 0.5

6.3. Time & Space Complexity

We compare the training time, inference time and mem-
ory requirements of the two architectures in Table[d We ob-
serve that memory requirements of SparseUnet architecture
are marginally higher than PointNet++. Both networks can
still be trained on a single gpu. As expected, training and
inference times are significantly higher for SparseUnet. For
detection, PointNet++ is 3-4x faster at detection. However,
the difference is smaller for the task of captioning. Sparse-
Unet is only 1.5-2x slower than PointNet++ in this setting.

6.4. Qualitative Results

We also perform a qualitative comparison between
SparseUnet and PointNet++ for tasks of object detection
and dense captioning. Fig.[3|compares the quality of bound-
ing boxes for one of the scenes. We can see that SparseUnet
predicts bounding boxes a lot more accurately. In Fig. 4] we
compare captioning performance using two scenes as exam-
ples. Looking at scene 1, we see that captions generated by
SparseUnet are better at capturing the global semantics of
the scene and relations between objects. In case of the arm-
chair, SparseUnet network describes the absolute position
of the object in the room, while PointNet++ only grounds
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Figure 4: Captioning visualization of SparseUnet (left) and PointNet++ (right) in each scene. In scene 1, Armchair and chair
bounding-box predictions have been highlighted in red and green respectively. Ground truth bounding box of blackboard
being referenced in both captions is highlighted using blue. In scene2, lamp predictions are highlighted using blue.

Task Backbone | Memory | Forward | Forward+ | Training | Parameters
Backward | time
Detection PointNet++ | 6.7GB 0.22s 0.9s 7h 1.0M
SparseUnet | 7.5 GB 0.82s 2.5s 23h 38M
Captioning PointNet++ | 8.0 GB 0.82s 1.4s 3%h 2.7TM
SparseUnet | 8.8GB 1.15s 3s 70h 40M

Table 4: Memory, inference and training time requirements for SparseUnet and PointNet++ on detection and dense captioning

tasks

the armchair relative to another nearby chair which is less
descriptive. In scene 2, we see that PointNet++ network
misclassifies the lamp, while SparseUnet predicts the class
correctly and generates a meaningful caption.

7. Conclusion

Our experiments show that our proposed SparseUnet
backbone gives an overall performance improvement over
the PointNet++ in tasks of object detection and dense

captioning. SparseUnet backbone leads to more accurate
bounding boxes. It also seems to be better at capturing the
global semantics of the scene, which helps Scan2Cap gener-
ating captions that are more meaningful and insightful. This
gain in accuracy comes at a cost of slower training and in-
ference, but the trade-off is worth it for offline applications.
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