
VC Classes are Adversarially Robustly Learnable, but Only1

Improperly2

Authors: Omar Montasser, Steve Hanneke, Nathan Srebro3

Review by Anurag Singh, 037433844

August 4, 20215

1 Paper summary6

The paper aims to investigate the learning of adversarially robust predictor. The claim made by7

the authors is that for any hypothesis class H which has a finite VC dimension, it is robustly8

PAC - learnable with an improper learning rule. The authors define the requirement of improper9

learning necessary, as they demonstrate by giving examples of hypothesis classes H with finite VC10

dimension that are not robustly PAC learnable with any proper learning rule.11

1.1 Problem setup and Preliminaries12

For an instance space X the label space Y = {±1}. Consider there exists an adversary U : X → 2X13

to protect against. Let U(x) ⊆ X is the set of adversarial examples that can be chosen by the14

adversary at test time. For example, U(x) could be perturbations of distance at most γ w.r.t.15

some metric ρ: U(x) = {z ∈ X : ||x− z||ρ ≤ γ}. For a distribution D over X × Y, observe m i.i.d.16

samples S ∼ Dm, the objective is to learn a predictor ĥ : X → Y having small robust risk defined17

as,18

RU (ĥ;D) := E(x,y)∼D

[
sup

z∼U(x)

1[ĥ(z) ̸= y]

]
(1)19

The common approach to adversarially robust learning is to pick a hypothesis class H ⊆ YX and20

learn through robust empirical risk minimization:21

ĥ ∈ RERMH(S) := argminh∈HR̂U (h;S) (2)22

Where R̂U (ĥ;S) := 1
mΣ(x,y)∈S supz∈U(x) 1[ĥ(z) ̸= y] as studied in (7). Given a hypothesis class23

H ⊆ YX , goal is to design a learning rule A : (X × Y)∗ → YX such that for any distribution24

D over X × Y, the rule A will find a predictor that competes with the best predictor h∗ ∈ H in25

terms of the robust risk using a number of samples that is independent of the distribution D. The26

following definitions formalize the notion of robust PAC learning in the realizable and agnostic27

settings as defined in (2).28

29

Definition 1. Agnostic Robust PAC learning: For any ϵ, δ ∈ (0, 1), the sample complex-30

ity of agnostic robust PAC learning of H with respect to adversary U , is defined as the smallest31

m ∈ N ∪ {0} for which there exists a learning rule A : (X × Y)∗ → YX such that, for every data32

distribution D over X × Y, with probability at least 1− δ over S ∼ Dm,33

RU (A(S) = D) inf
h∈H

RU (h;D) + ϵ (3)34
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If no such m exists, sample complexity is infinite. We say that H is robustly PAC learnable in the35

agnostic setting with respect to adversary U if smallest possible m i.e. sample complexity is finite.36

37

Definition 2. Realizable Robust PAC Learnability: For any ϵ, δ ∈ (0, 1), the sample com-38

plexity of realizable robust PAC learning of H with respect to adversary U is defined as the smallest39

m ∈ N ∪ {0} for which there exists a learning rule A : (X × Y)∗ → YX such that, for every data40

distribution D over X×Y where there exists a predictor h ∈ H with zero robust risk, RU (h,D) = 0,41

with probability at least 1 − δ over S ∼ Dm then, RU (A(S),D) ≤ ϵ. If no such m exists, then42

sample complexity is infinite. We say that H is robustly PAC learnable in the realizable setting43

with respect to adversary U if sample complexity is finite.44

45

Definition 3. Proper Learnability: H is properly robustly PAC learnable (in the agnostic or46

realizable setting) if it can be learned as in Definitions 1 or 2 using a learning rule A : (X×Y)∗ → H47

that always outputs a predictor in H. Learning using any learning rule A : (X ×Y)∗ → YX , as in48

the definitions above is improper learning.49

2 Main Proof Ideas50

Theorem 1: There exists a hypothesis class H ⊆ YX with vc(H) ≤ 1 and an adversary U such51

that H is not properly robustly PAC learnable with respect to U in the realizable setting.52

The proof of above theorem requires two main lemmas in its ideas,53

54

Lemma 2: Let m ∈ N. Then, there exists H ⊆ YX such that vc(H) ≤ 1 but vc(LU
H) ≥ m55

56

The prove begins by carefully constructing a hypothesis class by choosing {x1, . . . , xm} as points57

which have mutually disjoint perturbation sets, i.e. U(xi) ∩ U(xj) = ϕ. They start by building a58

set of points Z from which perturbations should not be picked and initialize it to {x1, . . . , xm}.59

Now for each bit string b ∈ {0, 1}m, Zb is made of perturbations of xi s.t. bi = 1. At the end60

Z = Z ∪ Zb so that for next bit-string perturbations don’t repeat. Then hb : X → Y is defined61

as:62

hb =

{
+1 x /∈ Zb

−1 x ∈ Zb

63

We can think of each mapping hb as being characterized by a unique signature Zb that indicates64

the points that it labels with −1. The hypothesis class is H = hb : b ∈ {0, 1}m. Now the proof65

that vc(H) ≤ 1 follows by taking z1, z2 ∈ X and considering cases that both belong to X −Z, only66

one belongs and none of them do. It can be shown that in each of the three cases any classifier67

will not be able to produce (-1,-1) when none of them are in Z, (-1,+1) if only z2 ∈ Z and either68

(-1,-1) or (+1,+1) when both z1, z2 ∈ Z.69

For proving vc(LU
H) ≥ m one can consider a set {(x1,+), . . . , (xm,+)} and show it can be shat-70

tered. Now we if pick any labeling y ∈ {0, 1}m by construction of H we can find a hb made by71

bit-string b = y. Then, for each i ∈ [m], supz∈U(xi) 1[hb(z) ̸= +1] = bi = yi and hence the set is72

shattered.73

74

Lemma 3:Let m ∈ N. Then, there exists H ⊆ YX with vc(H) ≤ 1 such that for any proper75

learning rule A : (X × Y)∗ → H,76

• A distribution D over X × Y and a predictor h∗ ∈ H where RU (h
∗;D) = 0.77

• With probability at least 1/7 over S ∼ Dm, RU (A(S);D) > 1/8.78
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This proof follows standard lower bound techniques that use the probabilistic method from Chap-79

ter 5 of (1). According to Lemma 2, for {x1 . . . x3m} construct H0. By construction then LU
H0

80

can shatter C = {(x1,+) . . . (x3m,+)} The idea is to construct a family of distributions that are81

supported on 2m points of C only and keeping only H ⊆ H0 that has classifiers robustly correct82

on 2m examples. This would make rule A to choose which points it can afford to be not correctly83

robust on. If rule A observes only m points, it can’t do anything better than guessing which of84

the remaining 2m points of C are actually included in the support of the distribution.85

86

For proof for theorem 1 we can construct sequences of subsets of 3m distinct points from X87

as Xm with no intersection in perturbation sets. We ensure that predictors in Hm are non-robust88

on the points in X
′

m for all m′ ̸= m as hb ∈ Hm,89

hb =

{
−1 x ∈ Zb or x ∈ Xm′ , m′ ̸= m

+1 otherwise
90

Then, H =
∪inf

m=1 Hm and then using lemma 2 we show VC dimension of V C(H) ≤ 1. Then we91

can apply lemma 3 over a distribution D of Xm × Y. The robust risk for a h∗ ∈ Hm is 0. This92

works because classifiers from classes Hm′ m′ ̸= m are non robust on Xm. Thus, rule A will do93

worse if it picks predictors from these classes. Which shows that the sample complexity to learn94

proper robust PAC learnable H is infinite.95

96

As opposed to previous theorem that shows that finite VC dimension is not sufficient for ro-97

bust PAC learning, the rest of theorems discussed after this in the paper try to show that finite98

VC dimension is sufficient for robust PAC learning both in realizable PAC learning setting and in99

agnostic PAC learning setting. We do this by providing a bound on their sample complexity in each100

case. We shall discuss the realizable setting and the agnostic setting follows very similar main ideas.101

102

Theorem 4:For any H and U ,∀ϵ, δ ∈ (0, 1/2),103

MRE(, δ,H,H) = O
(
vc(H)vc∗(H)

1

ϵ
log(

vc(H)vc∗(H)

ϵ
) +

1

ϵ
log(

1

δ
)

)
104

Where vc∗(H) is the dual VC dimension. Based on result vc∗(H) < 2vc(H)+1 (4) Corollary 5105

immediately follows. The proof makes use of sample compression arguments taking inspiration106

from work in (3). Modifications made in this proof forces the compression scheme to also have107

zero empirical robust loss. Fix a deterministic function RERMH mapping any labeled data set to a108

classifier in H robustly consistent with the labels in the data set, if a robustly consistent classifier109

exists. For a training sample set S, which is sampled iid from a robust realizable distribution,110

RU (RERMH(S);S) = 0. Then they inflate the training set S to potentially infinite set SU111

containing all the possible perturbations. Then this set is discretized to denote by ŜU ⊂ SU112

which includes exactly one (x, y) ∈ SU for each distinct classification {g(x,y)(h)}h∈Ĥ of Ĥ realized113

by functions g(x,y) ∈ G. Where Ĥ is set of classifiers selected by robust empirical risk minimization114

of n sample subset of S. In other words Ĥ = {RERMH(L), L ⊆ S st. |L| = n} and G is the dual115

space of set of functions g(x,y) : mathcalH → {0, 1} defined as g(x,y)(h) = 1[h(x) = y], for each116

h ∈ H and each (x, y) ∈ SU . By application of Sauer’s lemma we can bound the size of |ŜU | by117

(e2m/vc(H))vc(H)vc∗(H) for m > 2vc(H). By this construction the majority vote of any subset of118

classifiers in Ĥ for each point (x, y) ∈ SU is greater than 1/2. In other words,
∑T

t=1 1[ht(x) = y] >119

1/2. Then same will hold try for each (x, y) ∈ ŜU which means R̂U (Majority(h1, . . . , hT );S) =120

0.Which leaves us with the task of finding such a set of ht functions. By the choice of n and121

construction of hatSU we can find for any distribution D over hatSU , there exists hD ∈ Ĥ with122

3



Seminar: Theoretical Advances in Deep Learning - IN2017 (Summer Semester 2021)

êr(hD, D) < 1/3. Now we can run modified version of α boost on ŜU with RERMH as a weak123

learner i.e.hD as a weak hypothesis in a boosting algorithm. Using proof in (5), for an appropriate124

a-priori choice of in the α-Boost algorithm, and running the algorithm for rounds to give hypotheses125

ĥ1ĥT ∈ Ĥ s.t.126

∀(x, y) ∈ ŜU ;
1

T

T∑
i=1

1[hi(x) = y] ≥ 5/9127

Using the above observation we can say for ĥ = Majority(ĥ1, . . . , ĥT ) satisfies R̂U (ĥ, S) = 0. And128

thinking ĥ as a order-dependent reconstruction function we can say following about its compression129

size,nT = O(vc(H)log(|SU |) = O(vc(H)2vc(H)log(m/vc(H))). Using Lemma 11 and taking care130

of condition on m we can rewrite above as, with probability at least 1− δ,131

RU(h;P ) ≤ O(vc(H)2vc∗(H)
1

m
log

(
m

vc(H)

)
log(m) +

1

m
log(1/δ))132

With further application of technique from (6) the bound can be further reduced.133

3 Review134

Novelty: This paper provides two theoretical analyses of generalization for robust PAC learning.135

The results are very significant in my knowledge since they try to understand the generalization for136

adversarially robust learning objective which has wide applications (7). More precisely the contri-137

butions of the paper are that the authors show that there exists an adversary U and a hypothesis138

class H with finite VC dimension that cannot be robustly PAC learned with any proper learning139

rule (including RERM). They also show that for any VC class H and any adversary U , using an140

improper learning rule, H is agnostically robustly PAC learnable.141

142

Significance: Their results indicate that are for some hypothesis classes there are large gaps143

between what can be done with proper vs. improper PAC learning rules. This means that when144

studying a particular class, such as classes corresponding to neural networks, one should consider145

the possibility that there might be such a gap and that improper learning might be necessary.146

However, it is still an open question to study and establish if such gaps actually exist for specific147

interesting neural net classes (e.g., functions represened by a specific architecture, like resnet).148

Assuming that such gaps exist, one of the main takeaways of the paper is that for the task of149

adversarially robust learning, improper pac learning rules should be considered it would be inter-150

esting to see how improper pac learning is incorporated in neural network training/optimization151

framework.152

153

Clarity: The paper is technically sound and well written with proofs mostly easy to follow.154

There are some parts where proves could be more elaborate in the Lemmas, some comments on155

them are made in minor comments.156

157

Comments: The paper assumes certain aspects about the adversarial robust learning frame-158

work, that the U must be in the same instance space, which may not be the case for all attacks(8).159

Also, it may not be necessary that the perturbations do exist for all the inputs in the set with160

distance γ and it can be empty or possibly finite, which would mean that construction of such161

special hypothesis classes for proves would not be possible. As for some minor comments, I believe162

there few statements in the proof of Lemma 3 are hard to follow, particularly how being robustly163

correct on 2m examples leads to given set expression of H i.e. the following statement, We will164

only keep a subset H of H0 that includes classifiers that are robustly correct only on subsets of size165

2m, i.e. H = {hb ∈ H0 :
∑3m

i=1 bi = m}.166
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