Image Corpus Representative Summarization

Anurag Singh, Lakshay Virmani & A.V. Subramanyam* Netaji Subhas University of Technology, Delhi, India & Indraprastha Institute of Information Technology*, Delhi, India anurags.it@nsit.net.in, lakshayv.it@nsit.net.in, subramanyam@iiitd.ac.in

1. Introduction

The selection of representatives from a corpus of images in an essential requirement for efficient representation, navigation and exploration.

Applications

- Web image collection for e-commerce, tourism and travel exploration, story-telling from personal album collections, online image recommendation systems.
- Summarization of a dataset can help train models without trading-off much on accuracy as the diversity of data is maintained while saving huge computational resources.

2. Problem Overview and Challenges

- Given a collection of images, we aim to find a subset summary of these images.
- The problem is challenging because:
 - A good summary must cover various aspects of an image set such as relevance and diversity.
 - Redundancy is very hard to find and learn in an image corpus. Unlike in videos, there is no temporal relationship among images in a

5. Results

Variant	SUM_{gen}	SUM_{gen}^{DPP}	SUM_{task}
CIFAR100	0.307	0.292	0.274
VOC	0.565	0.546	0.542

Table 1: Reconstruction Error for different variants of our model at $\sigma = 0.1$

Method	Original	KMeans	SSDS	HyperSphere	Ours
CIFAR10	89.12	78.24	79.34	79.13	80.61
AwA2	92.50	87.35	88.61	88.90	89.50

Table 2: Comparison results of Classification Accuracy at $\sigma = 0.1$

3. Proposed Algorithm

Image Corpus (\mathcal{X})

Figure 1: Architecture of the Proposed Model

- The scorer assigns a relative importance score to each image such that higher the score, more the likelihood of the image being present in the summary.
- The pre-trained model is used when a task specific summary needs to be generated.

4. Training The Model

Losses used: Reconstruction Loss \$\mathcal{L}_{reconstruct}\$, Loss of GAN \$\mathcal{L}_{GAN}\$, Regularization Loss \$\mathcal{L}_{sparsity}\$ and Task-Specific Loss \$\mathcal{L}_{task-specific}\$.
The \$SUM_{gen}\$ variant of our model uses \$\mathcal{L}_{reconstruct}\$ + \$\mathcal{L}_{GAN}\$ + \$\mathcal{L}_{LR}\$, while \$SUM_{gen}^{DPP}\$ uses \$\mathcal{L}_{reconstruct}\$ + \$\mathcal{L}_{LR}\$ + \$\mathcal{L}_{DPP}\$ + \$\mathcal{L}_{GAN}\$ and \$SUM_{task}\$ employs \$\mathcal{L}_{reconstruct}\$ + \$\mathcal{L}_{LR}\$ + \$\mathcal{L}_{GAN}\$ + \$\mathcal{L}_{task-specific}\$ for training.

SUM DPP

Figure 3: Variance of Outliers and Reconstruction Error with β . The thresholds used here are 0.1 and 0.5, all images with cross-entropy loss ($\mathcal{L}_{pre-trained}$) greater than the threshold are considered to be outliers.

Regularization Loss

This loss regularizes the number of images that form the summary.

 $\mathcal{L}_{sparsity} = \mathcal{L}_{LR} + \delta \mathcal{L}_{DPP} \tag{1}$

where,

$$\mathcal{L}_{LR} = \left\| \frac{1}{n} \sum_{t=1}^{n} s_t - \sigma \right\|$$

where $\delta \in \{0, 1\}$ and \mathcal{L}_{DPP} is Determinantal Point Process (DPP) loss [1]. Task-Specific Loss

A task specific summary would be used to perform certain task. In the following, we assume a task specific summary where the task is classification.

$$\mathcal{L}_{task-specific} = \frac{(1-s)\mathcal{L}_{pre-trained}(X)}{\beta} \tag{2}$$

where $\mathcal{L}_{pre-trained}(X)$ is the loss obtained from the task specific pre-trained model and β is a hyper-parameter.

Figure 4: t-SNE plot for VOC2012. Full dataset, summary at 5% with SUMgen, SUM_{gen}^{DPP} and SUM_{task} variants. Different colors represent different classes.

6. References

 Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning. *Foundations and Trends® in Machine Learning*, 5(2– 3):123–286, 2012.